Academic Personnel Scientists & Academic Federation

Irina DelusinaIrina Delusina
Assistant Project Scientist
Ph.D., Tallinn Institute of Geology, Estonia (1989)
3242 Earth & Physical Sci
idelusina@ucdavis.edu | 530-752-1861
Geology

High-resolution records of climate change from ocean and lake environments as determined by palynological analyses. Reconstruction of vegetational history of late-glacial environment and its paleoclimatic implications. Evidence for the response of plant communities to climatic oscillations and analysis of environmental parameters responsible for vegetational alteration. Current research projects encompass California and the Caribbean region, including the palynological study of vegetation evolution and optimal conditions for the formation of peat in the Sacramento-San Joaquin Delta and marine sediments of the Cariaco Basin of Caribbean Sea as a source of information for paleoclimate reconstruction in a Neotropical region during late-glacial/Holocene transition.

Donna Eberhart-PhillipsDonna Eberhart-Phillips
Research Scientist
Ph.D., Stanford (1989)
2209A Earth & Physical Sci
eberhartphillips@ucdavis.edu | 530-752-1402
GeologyGeophysics

Modelling of three-dimensional seismic velocity structure and material properties; and seismotectonic analysis of active deformation. Motivated to integrate 3-D velocity and attenuation models with other geophysics and to use 3-D velocity models to understand the effects of heterogeneous material properties, to extend beyond simply interpreting crustal structure. Current research efforts have focused on New Zealand and Alaska, with emphasis on understanding subduction processes and the transition from subduction to collision. Recent work with imaging 3D attenuation structure is valuable for interpreting tectonic processes that involve fluids, and also has application to engineering response spectra.

Lorraine HwangLorraine Hwang
Academic Coordinator for CIG
Ph.D., California Institute of Technology (1990)
2215 Earth & Physical Sci
lorraine@geodynamics.org | 530-752-3656
Computational Infrastructure for Geodynamics (CIG)

Seismology, geologic carbon sequestration and induced seismicity.

Oliver KreylosOliver Kreylos
Associate Research Computer Scientist
Ph.D., UC Davis (2003)
2306 Academic Surge
okreylos@ucdavis.edu | 530-754-5655

Scientific visualization, computer graphics, virtual reality, human-computer interaction. Dr. Kreylos' research focuses on the development of techniques to apply virtual reality display systems and human-computer interaction devices such as the KeckCAVES to scientific research, primarily in the Earth and physical sciences. Concretely, this involves development of visualization software to create three-dimensional renderings of scientific data, development of interaction techniques to extract observations and quantitative derived data from these data, and development of support software to drive novel display and user interface hardware.

Hiroaki MatsuiHiroaki Matsui
Associate Research Scientist
Ph.D., Tohoku University
1227 Math Sciences
hrmatsui@ucdavis.edu | 530-752-0547
Computational Infrastructure for Geodynamics (CIG), Geophysics

Ann RussellAnn Russell
Associate Research Scientist, retired on recall
Ph.D., University of Washington (1994)
2211 Earth & Physical Sci
adrussell@ucdavis.edu | 530-752-3311
Geology

Paleoceanography and chemical oceanography. Dr. Russell's research focuses on development and application of geochemical tracers of changes in ocean chemistry, including metals and stable isotopes in foraminiferal shells, and redox-sensitive metals in bulk sediments. Ann uses these geochemical tracers to reconstruct changes in ocean temperature, carbon chemistry, and redox environment from deep-sea sediment cores.

Dylan SpauldingDylan Spaulding
Assistant Project Scientist
Ph.D., UC Berkeley (2010)
104 Shockwave Lab
dkspaulding@ucdavis.edu | 530-754-7014
Planetary Science, Geophysics

Planetary formation and evolution. Dr. Spaulding conducts shock compression experiments on light gas gun platforms to investigate material properties at high pressures and temperatures. In the laboratory, Dylan investigates how materials change under extreme conditions, including the aftermath of large impact events and in the deep interiors of planets. This may include measuring equations of state, phase relations, pressure-induced chemistry and shock-induced changes in samples, all of which seek to constrain the question of how to make a habitable planet.

Peter ThyPeter Thy
Project Scientist
Ph.D., University of Aarhus (1982)
2234 Earth & Physical Sci
pthy@ucdavis.edu | 530-752-1802
Geology

Igneous petrology of gabbros and basalts. Detailed petrographic, mineralogical and chemical studies to understand petrogenesis and crystallization. Current research includes gabbroic intrusions and plateau basalts of the North Atlantic province (Skaergaard intrusion, East Greenland, Iceland). Ocean gabbros and crustal formation (Indian Ocean). Ophiolites (Cyprus and Turkey). Formation of ash and slag in biomass-fueled power plants.

Curtis WilliamsCurtis Williams
Assistant Research Scientist
Ph.D., Arizona State University (2014)
3203C Earth & Physical Sci
cdwill@ucdavis.edu
Geochemistry and Cosmochemistry

Origin of the Solar System and formation of planets. Dr. Williams conducts geochemical measurements on both terrestrial and extraterrestrial materials to address questions regarding the early Earth, the origin and evolution of planetary bodies, and chemical cycling between the interior and exterior of planets. Dr. Williams also uses geodynamic models to connect his geochemical measurements to seismic observations of the Earth’s interior to better constrain the nature of thermal and chemical variability in the mantle.
curtiswilliams.net

M/ Burak YikilmazM. Burak Yikilmaz
Assistant Research Scientist
Ph.D., UC Davis (2010)
mbyikilmaz@ucdavis.edu
Geology; Geophysics

Structural geology, tectonics, geodynamics, and geoinformatics. Primary collaborator on the Augmented Reality Sandbox project. Currently working with informal science education centers on an NSF funded project to improve STEM (Science Technology Engineering Math) education by providing 3D visualizations of the major lakes and reservoirs of the world to enhance public awareness and increase understanding and stewardship of freshwater lake ecosystems, habitats, and earth science processes.